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Outline

Building humanoid robots 
Biomechanical models of the human body

Mechatronics of humanoid robots

Grasping 
Grasping in humans 

Grasping Taxonomies 

Grasping familiar and unknown objects 

Active Perception 
Active vision and active touch 

Visuo-haptic exploration 

Imitation-learning & Programming by Demonstration: Observation, representation and 
reproduction

Acquisition and analysis of human motion

Action representations: DMPs, HMMs, Splines

Mapping and motion reproduction 

From Signals to Symbols 
From features to objects and from motions to actions

Object-Action Complexes: Semantic sensorimotor categories

AI & Robotics
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Grasping 

Fundamentals and definitions 

Grasping in humans “Neuroscience of grasping”

Human Hand models

Grasping Taxonomies

Postural Synergies and Eigengrasps

Implementation of synergies in robotics

The TUAT/Karlsruhe Humanoid Underactuated Hand

Eigengrasps: Grasp planning based on postural synergies

Grasping known, familiar and unknown objects 
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Cognitive Grasping

Grasping and manipulation as a control
problem have been studied since the 
beginning of robotics: HOWEVER - very 
little has been done in terms of cognitive 
aspects of grasping, implementation and 
evaluation of systems

Large part of the human cortex is 
dedicated to grasping and manipulation, 
and it would seem reasonable to assume 
that all of this cognitive machinery is 
dedicated to finely controlling individual 
joints and generating highly flexible hand 
postures

Understanding how the human brain 
controls the hand 

Understanding hands = Understanding Intelligence 
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What is a grasp?

A system wherein a desired object is 
gripped by the fingers of a robot (or 
human) hand is generally called a grasp

Precision grasp: object gripped by 
fingertips only

Force-closure grasp is a grasp which is able 
to 

1. generate any external force that the grasped 
object may have to exert on an external body 
and 

2. counteract any external disturbing forces that 
may try to loosen the grip
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What properties are essential to grasps

Researchers (Cutkosky 1989; Liu et al. 1989; Iberall 1987) have 
identified a multitude of properties that an articulated force-
closure grasp must possess in order for it to be able to perform 
everyday tasks similar to those performed by human hands. 

Four mutually independent grasp properties:
1. Dexterity: How should grasping fingers be configured?

2. Equilibrium: How hard to squeeze the grasped object?

3. Stability: How to remain unaffected by external disturbances?

4. Dynamic behavior: How soft a grasp should be for a given task?
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What properties are essential to grasps

K.B. Shimoga, Robot Grasp Synthesis Algorithms: A Survey. The International Journal of Robotics 
Research June 1996 15: 230-266, doi:10.1177/027836499601500302 
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Grasp analysis and grasp synthesis

Analysis means the study of grasp 
properties for a given set of finger 
properties. 

Synthesis means the determination 
of the required finger properties in 
order for the grasp to acquire some
desired properties.

Analysis

Grasp
Properties

Synthesis 

Finger 
Properties

K.B. Shimoga, Robot Grasp Synthesis Algorithms: A Survey. The International Journal of Robotics 
Research June 1996 15: 230-266, doi:10.1177/027836499601500302 
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Grasp contacts

Each point contact can be modelled as either 

Frictionless point contact: Finger can only exert a force along the 
common normal at the point of contact   

Frictional point contact: A contact that can transmit both a normal and 
tangential force 

Soft contact: Allows the finger to exert a pure torsional moment about 
the common normal at the point of contact 

See Lecture “Robotic I”
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What influences the generation of grasp hypotheses?

Prior object knowledge

Object-grasp 
representations

Features of different 
modalities such as 2D or 3D 
vision or tactile sensors. 

Grasp synthesis

Task 

Hand kinematics

Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica 
Kragic, Data-Driven Grasp Synthesis - A Survey. IEEE Tran. 
on Robotics, pp. 289-309, vol. 30, no. 2, 2014 
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Object classes for robot grasping

Known objects (This is the domain of Grasp Planning!)

Known object geometry (i.e. we have a complete geometric object model)

Approach: Use various grasp planning methods (only for known objects!)

Hard

“Familiar” objects

Class of object is known (e.g. “bottle”)

Approach: Reuse grasp knowledge from known class members for new object

Harder

Unknown objects

No knowledge of the object

Challenges: Dealing with (incomplete) sensor data (stereo vision, RGB-D, laser 
scan, haptic data…), segmentation from the background, building a (partial) 
object model

Ideas: Multi sensor fusion, pushing the object, …

Hardest!



Chapter 3 | 12

Object classes for robot grasping

Known objects (This is the domain of Grasp Planning!)

Known object geometry (i.e. we have a complete geometric object model)

Approach: Use various grasp planning methods (only for known objects!)

Hard

“Familiar” objects

Class of object is known (e.g. “bottle”)

Approach: Reuse grasp knowledge from known class members for new object

Harder

Unknown objects

No knowledge of the object

Challenges: Dealing with (incomplete) sensor data (stereo vision, RGB-D, laser 
scan, haptic data…), segmentation from the background, building a (partial) 
object model

Ideas: Multi sensor fusion, pushing the object, …

Hardest!

Grasp planning is 
always about 

known objects!



Chapter 3 | 13

Review papers on grasping 

Antonio Bicchi, Vijay Kumar, Robotic grasping and contact: A review. ICRA
2000

Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica Kragic, Data-Driven 
Grasp Synthesis - A Survey. IEEE Tran. on Robotics, pp. 289-309, vol. 30, no. 
2, 2014 

Aspects that influence the generation of grasp hypotheses 

Classification of the different approaches 

Red: relevant for the exam
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Grasping in Humans 
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Literature

Umberto Castiello. The neuroscience of grasping, Nature Rev. Neurosci. 6, 
726–736 (2005)

Red: relevant for the exam
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The neuroscience of grasping

The study of grasping was advanced by Napier’s 
landmark work on PRECISION and POWER 
GRIPS.

Precision grasp:A precision grasp is 
characterized by opposition of the thumb to 
one or more of the other fingers.

Power grasp: In a power grasp, the fingers 
are flexed to form a clamp against the palm.

Napier, J. R. Hands (George Allen & Unwin Ltd, London, 1980).
Napier, J. R. Studies of the hands of living primates. Proc. Zool. Soc. 134, 647–657 (1960).
Napier, J. R. Prehensility and opposability in the hands of primates. Symp. Zool. Soc. 5, 115–132 (1961).
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The neuroscience of grasping

Napier showed that despite the enormous 
variability in aspects of movement such as 
force, posture, duration and speed, the 
underlying control principles were amazingly 
elegant. 

These principles were based on the 
supposition that the intended activity 
determines what type of grasp is used for 
any given action (for example, grasping a 
pen to write involves a different grip from 
grasping it to put it in a box).

1. Napier, J. R. Hands (George Allen & Unwin Ltd, London, 1980).
2. Napier, J. R. Studies of the hands of living primates. Proc. Zool. Soc. 134, 647–657 (1960).
3. Napier, J. R. Prehensility and opposability in the hands of primates. Symp. Zool. Soc. 5, 115–132 (1961).
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The neuroscience of grasping

Since these early studies, grasping has been widely investigated in humans and 
monkeys using various tasks and techniques. 

Goal: Integrate information from various domains to ascertain which neural 
circuits underlie grasping

Paper’s contributions: 

Kinematics of grasping in humans and macaque monkeys. 

Evidence that grasping requires several neural mechanisms, some of which are 
concerned with individual finger force  and movement, and others that involve a 
specialized visuomotor system that encodes object features and generates the 
corresponding hand configurations.

Evidence from lesion and neuroimaging studies in humans is compared with 
neurophysiological studies in monkeys. 

Although much of the work on grasping comes from monkeys, and this work has 
contributed to our understanding, caution is necessary when drawing homologies 
across species. 

Factors that should be taken into account by neuroscientists in the quest to 
understand the neural bases of grasping.
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The kinematics of grasping

Kinematics consider movement in terms of position and displacement 
(angular and linear) of body segments, center of gravity, and acceleration and 
velocities of the whole body or segments of the body.

The mechanics of grasping in humans and macaque monkeys vary depending 
on object attributes. 

Although the substantial differences in hand morphology between these two 
species are the focus of current debate, it is important to compare grasping 
in humans and monkeys because of the common practice of looking for 
homologies between the two species’ brains.



Chapter 3 | 20

The kinematics of grasping

Jeannerod coded grasping in terms of changes in grip aperture -
the separation between the thumb and the index finger. 

During a reach-to-grasp movement, there is first a progressive opening
of the grip with straightening of the fingers, followed by a gradual 
closure of the grip until it matches the object’s size

The point in time at which the thumb-finger opening is the largest 
(maximum grip aperture) is a clearly identifiable landmark that 

occurs within 60–70% of the duration of the reach and 

is highly correlated with the size of the object

1. Jeannerod, M. in Attention and Performance IX (eds Long, J. & Baddeley, A.) 153–168 (Erlbaum, Hillsdale, 1981). This 
paper was the first to characterize kinematically the reach-to-grasp movement in humans. This seminal work laid 
the foundation of much of our current understanding of grasping.

2. Jeannerod, M. The timing of natural prehension movements. J. Mot. Behav. 16, 235–254 (1984).
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The kinematics of grasping
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Kinematics of grasping in monkeys and humans
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The neurophysiology of grasping

Study of single cells in the monkey brain. 

Three specific areas relating to grasping 
have been identified in the monkey cortex

the primary motor cortex (F1), 

the premotor cortex (PML/F5)

and the anterior intraparietal sulcus (AIP). 

In terms of neural mechanisms, performing 
a successful grasping action depends 
primarily on the integrity of the primary 
motor cortex (F1). 

In monkeys, lesions of this area produce a 
profound deficit in the control of individual 
fingers and consequently disrupt normal 
grasping
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Neural circuits for grasping in monkeys and humans

Given the wealth of evidence for a grasping circuit involving 
several areas in the monkey brain, the natural question is 
whether a similar circuit exists in humans. 

For ethical reasons, invasive physiological recording of brain 
activity is rarely possible in humans. Nonetheless, considerable 
progress has been made towards understanding the neural 
substrates of grasping in humans, mainly from studies of 
patients with brain damage and neuroimaging experiments.
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The neuropsychology of grasping

Jeannerod found that in reaching out to grasp an object, the finger grip 
aperture of patients with optic ataxia was abnormally large, and the usual 
correlation between maximum grip aperture and object size was missing.

Optic ataxia is classically considered to be a specific disorder of the visuomotor transformation caused by posterior parietal lesions, in 
particular, lesions of the superior parietal lobe (SPL). 
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Human Hand  Models 
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Hand : Bones and joints

SaddleThumb Carpometacarpal (CM)

Thumb MP Acts as hinge
(flexion-extension)

Distal Phalanges

Carpal bones

Metacarpals

Proximal Phalanges

Intermediate Phalanges

1

2
3

4

5

Fingers Carpometacarpal (CM)

Intermetacarpal

Metacarpophalangeal (MP)

Proximal Interphalangeal (PIP)

Radiocarpal Condyloid

Condyloid

Gliding

Hinge

(more motion at the 5th CM)

(flexion-extension)Distal Interphalangeal (DIP)
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Anatomy of the human hand

27 bones

27 DoF (total)

3 DoF flexion/extension type per finger

1 DoF abduction/adduction type per finger

5 DoF thumb: 

3 DoF flexion/extension  type

2 DoF abduction/adduction type

6 DoF at the carpus (palm)

U. Schmidt, Hans-Martin; Lanz. Chirurgische 
Anatomie der Hand. Stuttgart, New York, 2003. 
Georg  Thieme Verlag
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Human hand models in the literature

Large variety of human hand models

Different kinematic models

Varying numbers of DoF

Depending on the purpose

Not only in robotics but also in computer vision, Human-Computer interaction, 
biomedical engineering, … 

Different applications

Grasp planning and analysis: More complex thumb kinematics useful

Prosthetics hands 

Understanding human grasping 

Tracking (usually no intrinsic DoFs in the palm necessary)

Always trade-off between requirements for intended use and complexity
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Cobos et al., 2008

24 DoF  (total)

1 DoF carpometacarpal
(CMC) joint per finger

4 DoF thumb

Miller et al., 2005

21 DoF (total)

5 DoF thumb, 2 versions:

perpendicular joint axes

non-perpendicular joint axes

S. Cobos, et al. Efficient human hand kinematics for
manipulation tasks. Intelligent Robots and Systems 
2008, pages 2246-2251, Sept. 2008.

A. Miller, et al.: From Robotic Hands to Human Hands: A 
Visualization and Simulation Engine for Grasping Research. 
Industrial Robot: An International Journal,, 2005

Human hand models
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Du and Charbon 2007

24 DoF  (total)

1 DoF TM joint (twist type) 
per finger

4 DoF thumb

Kuch and Huang 1994

23 DoF  (total)

2 DoF at the palm:

at the base of ring and pinky
metacarpals 

5 DoF thumb

Human hand models

H. Du and E. Charbon. 3d hand model Fitting for virtual 
keyboard system. In WACV '07: Proceedings of the Eighth 
IEEE Workshop on Applications of Computer Vision

J. Kuch, T. S. Huang: Human Computer Interaction via the 
Human Hand: A Hand Model. Conference Record of the 28th 
Conference on Signals, Systems and Computers 1994
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Pollard and Zordan 2005

19 ball joints for a total of 57 
DoF

for motion capturing use 

Stenger et al. 2001 

20 intrinsic DoF (total)

4 DoF per finger

4 DoF thumb

no DoF at the palm

Used for hand tracking

Hand joints represent segments 
in the model 

Human hand models

N.S. Pollard, V.B. Zordan: Physically based grasping 
control from example. Proceedings of the 2005 ACM 
SIGGRAPH/Eurographics symposium on Computer 
animation, pages 311-318

B. Stenger, P. R. S. Mendonca, and R. Cipolla. Model based 3D 
tracking of an articulated hand. In Proc. CVPR, volume II, pages
310–315, Kauai, HI, December 2001.
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Karlsruhe human hand model (MMM model) 

Kinematics

23 DoF

Anthropometric data

Anatomically correct finger segment 
lengths depend on total hand length

Based on data from (Buchholz et al.  1992)

Part of the MMM at H2T
https://gitlab.com/groups/mastermotormap

https://gitlab.com/groups/mastermotormap
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Literature: Human hand models

1. B. Buchholz, T.J. Armstrong, S.A. Goldstein: Anthropometric data for describing the kinematics of the human hand, Ergonomics,
Vol. 35(3), pages 261-273, 1992

2. S. Cobos, M. Ferre, M. Sanchez Uran, J. Ortego, and C. Pena. Efficient human hand kinematics for manipulation tasks. Intelligent 
Robots and Systems 2008, pages 2246-2251, Sept. 2008.

3. H. Du and E. Charbon. 3d hand model fitting for virtual keyboard system. In WACV '07: Proceedings of the Eighth IEEE Workshop 
on Applications of Computer Vision, page 31, Washington, DC, USA, 2007. IEEE Computer Society.

4. U. Schmidt, Hans-Martin; Lanz. Chirurgische Anatomie der Hand. Stuttgart, New York, 2003. Georg Thieme Verlag.

5. J. Kuch, T.S. Huang: Human Computer Interaction via the Human Hand: A Hand Model. Conference Record of the 28th Asilomar
Conference on Signals, Systems and Computers 1994, pages 1252-1256

6. A. Miller, P. Allen, V. Santos, F. Valero-Cuevas: From Robotic Hands to Human Hands: A Visualization and Simulation Engine for 
Grasping Research. Industrial Robot: An International Journal, Volume 32, 2005

7. N.S. Pollard, V.B. Zordan: Physically based grasping control from example. Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 311-318

8. B. Stenger, P. R. S. Mendonca, and R. Cipolla. Model based 3D tracking of an articulated hand. In Proc. CVPR, volume II, pages 
310–315, Kauai, HI, December 2001.

9. F. J. Valero-Cuevas, M. E. Johanson, and J. D. Towles. Towards a realistic biomechanical model of the thumb: the choice of 
kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal 
parameters. Journal of Biomechanics, 36(7):1019 - 1030, 2003.
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Grasping Taxonomies
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Why a taxonomy? 

Benchmark to test robot hand abilities

Simplify grasp synthesis

Inspire hand design

Optimization of synergies: Formulation of dexterity/functionality as 
number of achievable grasps for maximization

Guide autonomous grasp selection
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Grasp Taxonomies (Cutkosky)

Power and Precision grasps 

Obtained by observing 
machinists during their work

Focus on using tools in a 
workshop

Mark Cutkosky, On Grasp Choice, Grasp Models, 
and the Design of Hands for Manufacturing 
Tasks. IEEE Transactions on Robotics and 
Automation, vol. 5, no. 3, pp. 269 – 279, 1989
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Cutkosky Grifftaxanomie
Griffe

Kraft Präzision

Nicht ergreifend Ergreifend

Prismatisch Kreisförmig Kreisförmig Prismatisch

Fest ergreifend Scheibe Kugel Scheibe Kugel Tripoid

kleinergroßer

Durchmesser
mittelfester

greifend

gespreizter 

Daumen
leichtes 

Werkzeug

4 Finger 

Daumen

3 Finger 

Daumen
2 Finger 

Daumen
Index 

Daumen

Lateraler KniffPlattform lang kompakt

dünn
kompakt lang

Geschicklichkeit, SensitivitätSicherheit, Stabilität

Zunehmende Kraft und Objektgröße Zunehmende Geschicklichkeit; abnehmende Objektgröße
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Typical grasp motion of daily life

A. D. Keller, C. L. Taylor and V. Zahm: Studies to determine the functional requirements for hand & arm prostheses,
Dept. of Engr., UCLA., CA, 1947
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Kamakura Taxonomy

N. Kamakura, M. Ohmura, H. Ishii, F. Mitsubosi, and Y. Miura. Patterns of 

static prehension in normal hands. In Amer. J. Occup. Ther., vol. 34, pp. 

437–445, 1980

N. Kamakura. Te no ugoki, Te no katachi (Japanese). Ishiyaku Publishers, 

Inc., Tokyo, Japan, 1989.

Keni Bernardin, Master Thesis, University of Karlsruhe 



Chapter 3 | 41

Kamakura Taxonomy

The taxonomy considers 

1. purpose of a grasp

2. hand shape 

3. contact points with objects 

General enough to be used for 
most manipulation tasks
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Kamakura Taxonomy
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Kamakura Taxonomy
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Kamakura Taxonomy
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Kamakura Taxonomy
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Kamakura Taxonomy
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Kamakura Taxonomy
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Kamakura Taxonomy



Chapter 3 | 49

Bullock Taxonomy 

Important terms in the taxonomy 

Bullock, I.M.; Ma, R.R.; Dollar, A.M., "A Hand-Centric Classification of Human and Robot Dexterous Manipulation," IEEE 
Transactions on Haptics,  6(2):129-144, 2013
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Bullock Taxonomy 

Hand-centric and 
motion-centric 
manipulation 
classification

Bullock, I.M.; Ma, R.R.; Dollar, A.M., "A 
Hand-Centric Classification of Human and 
Robot Dexterous Manipulation," IEEE 
Transactions on Haptics,  6(2):129-144, 2013
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Duality of grasping and balancing 

CM

Ground reaction forces
Weight of the body (CM)

Torques on the joints

CM

Fingertip forces
Weight of the object (CM)
Torques on the joints

Equilibrium is reached by balancing similar sets of forces
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Duality of grasping and balancing 

Concepts of grasping can be applied 
to loco-manipulation

Grasp synthesisStep planning

Stable graspBalance

CM
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Duality of grasping and balancing 

Selection of support pose Grasp selection

Selection of contact points  Grasp synthesis

Classification of support

pose possibilities
Grasping taxonomies

J. Borràs and T. Asfour, A Whole-Body Pose Taxonomy for Loco-Manipulation Tasks, IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS), pp. 1578 - 1585, October, 2015 

Red: relevant for the exam
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Whole-body poses in loco-manipulation tasks

Given: humanoid, task and scene and its affordances:

How many poses can be realized?

Which pose should be selected ?

How to realize it?  planning, control
Taxonomy

The whole-body can adopt many poses for balancing

Single 
foot support

Double
foot support

Classic postures: 

Postures and their 
transitions are very

well studied
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Whole-body poses in loco-manipulation tasks

Given: humanoid, task and scene and its affordances:

How many poses can be realized?

Which pose should be selected ?

How to realize it?  planning, control
Taxonomy

The whole-body can adopt many poses for balancing

1 Hand
1 Foot

1 Hand
2 Feet

Double
knee support

1 Hand
2 Knees

1 Foot
1 Knee

Other possible combinations:

Considering other types of contacts:

Arm contactsDouble foot support
with hold (hand grasping
a handle)

Single 
foot support

Double
foot support

Classic postures: 

Postures and their 
transitions are very

well studied
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Towards a taxonomy of whole body support poses

Support pose: defined by contacts that provide balance support

Criteria for classification:
Number of contacts: Relevant for balance conditions/control
Type of contacts: Determine the mobility (DoFs) and the transmission of contact 
forces
Possible transitions: We only allow one contact change at a time.

Possible poses beyond walking

1 Hand

1 Foot

1 Hand

2 Feet

Double

knee support

1 Hand

2 Knees

1 Foot

1 Knee

How many combinations are possible?

Single 

foot support
Double

foot support

Classic postures

We ignore contacts with
manipulation objects

It depends on types of contacts considered!
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𝑓 𝐶𝐿, 𝐶𝐴 = ෍

𝑁𝐿=1

2
𝐶𝐿 + 𝑁𝐿 + 1

𝑁𝐿
⋅ ෍

𝑁𝐴=1

2
𝐶𝐴 + 𝑁𝐴 + 1

𝑁𝐴

𝑓 3, 5 = 189
𝑓 2, 3 = 50

Type of contacts

Possible contacts with extremities

Combinatory between number of contacts and type of contacts considered

Type of contacts with arms Type of contacts with legs

A total of 36 poses are selected. Difficult/complex/unprobable poses are discarded. 

Examples of 
discarded poses

+  HoldTips Fingers Palm Arm
Tip-toes Feet Knees

Hold is 
represented 
as a dot

𝐶𝐿 = # type of leg contacts

𝐶𝐴 = # type of arm contacts
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Taxonomy of whole-body poses

Borras and Asfour, IROS 2015
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Taxonomy of whole-body poses

Total: 46 classes

18 standing 
poses

18 kneeling
poses

10 resting 
poses

Borras and Asfour, IROS 2015
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Taxonomy of whole-body poses

1 contact

2 contacts

3 contacts

4 contacts

Borras and Asfour, IROS 2015
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Taxonomy of whole-body poses

Lines represent transitions
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Classification of whole-body actions

Type I: Actions to change the environment 

One support pose is selected to perform the manipulation

Only rows 1 to 3 of taxonomy allow manipulation actions

Type II: Actions to change the body

Succession of support poses to allow locomotion or balancing

All rows of taxonomy can be used

Type III: Combination of I and II

Contacts are used to balance and to change 
the environment

Only rows 2 to 4 of taxonomy

Walk on stairs with handleCrawling

Ex. of pose selection for action
“Hit an object”
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Validation of the taxonomy

Analyses of different human loco-
manipulation tasks with supports

Reference model of the human body 
(Master Motor Map: MMM) with 104 
DoF

Motion capture data mapped to 
reference model of the human body 
(MMM)

Automatic segmentation to detect 
support poses and transitions

Automatic generation of a taxonomy 
of the poses and their transitions in 
the motion database
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Analysis of pose transitions

Going upstairs with a handle
Detection of support contacts highlighted in red

Generated graph of transitions:

Subject swings left foot with a right foot – right hand support pose
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Analysis of pose transitions

Lean on table to pick up a cup
Generated graph of transitions:

Detection of support contacts highlighted in red

The manipulation takes place on a one Hand – one Foot 
support pose
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Analysis of pose transitions

Push recovery from a push from behind
Detection of support contacts highlighted in red

Generated graph of transitions:

Transitions with 2 changes of contacts.
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Validation of the taxonomy

• Total of 121 motions processed
• Locomotion

• Upstairs/downstairs with 
handle 

• Walk with handle
• Walk avoiding obstacles 

using hand supports
• Loco-manipulation 

• Lean to reach/place/wipe
• Bimanual pick and place of 

big objects
• Balancing 

• push recovery 
• recovery due to lost 

balance
• Kneeling motions

• 4,5% of poses missed (all double foot 
supports (the looping edges))
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Validation of the taxonomy

• Total of 388 motions processed
• Locomotion

• Upstairs/downstairs with 
handrail 

• Walk with handrail
• Walk using table for 

supports
• Kneeling up and down
• Crawling
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Postural Synergies and Eigengrasps
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Postural Synergies

Literature 

Marco Santello, Martha Flanders, John F. Soechting. Postural Hand Synergies for 
Tool Use, The Journal of Neuroscience, 18(23): 10105-10115 (1998)

Antonio Bicchi, Marco Gabiccini, Marco Santello. Modelling natural and artificial 
hands with synergies, Philosophical Transactions of the Royal Society B, 366: 
3153-3161 (2011)

Red: relevant for the exam
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Introduction

Questions:
How do humans grasp? 
Do they control all the hand’s DoF individually? 

Answer from human grasping experiments:
"Experimental evidence indicates that the simultaneous motion and force of the 
fingers are characterized by coordination and covariation patterns that reduce the 
number of independent degrees of freedom to be controlled.“ (Bicchi et al., 2011)

In other words:
Not all finger joints are controlled independently when grasping an object.
Movements of the finger joints are strongly correlated.
Grasping movements are dominated by synergies in a (low-dimensional) posture 
space.

What are postural synergies?
Postural synergies are the correlation of degrees of freedom in patterns of more 
frequent use. 
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Postural synergies - Experiment

Human subjects were asked to perform 
grasp motions for various objects.

No real objects were present, but the 
participants only imagined to grasp a large 
number of objects (n = 57) and moved the 
hand to a corresponding grasp 
configuration
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Postural synergies - Experiment

The hand movement was observed and 
measured by 15 sensors embedded in a 
glove (CyberGlove) 

Measurement sample rate 12 msec

Each hand posture describes a joint angle 
configuration of the human hand 
approximated by a 15 DoF hand model.
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Postural synergies - Results

Principal Component Analysis on 
the data:

During grasping, the hand 
moves in a low-dimensional 
subspace.

Considering only the first two
principal components, 80% of 
the variance in the data can be 
represented.

Using the first three principal 
components, 97% of the 
variance can be represented.

• Postural synergies defined by the first two 
principal components (PC1 and PC2) 

• The hand posture at the center of the PC 
axes is the average of 57 hand postures for 
one subject. 

• Images rendered with the palm of the hand 
in the same orientation
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Postural synergies - Results

Distribution of hand 
postures in the plane of 
the first two principal 
components. 

The coefficients of the 
first two principal 
components are shown 
for each of the 57 objects 
for one subject. 

Note the lack of clustering 
and the distribution of 
the coefficients along two 
main axes.
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Postural synergies - Results

Distribution of hand 
postures in the plane of 
the first two principal 
components. 

The coefficients of the 
first two principal 
components are shown 
for each of the 57 objects 
for one subject. 

Note the lack of clustering 
and the distribution of 
the coefficients along two 
main axes.

Interpolation between various grasp postures
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Postural Synergies – subject variance of the PCs

The first three PCs account for ~ 90% of the variance

The first two PCs account for ~ 84% of the variance

This suggests a significant reduction in the number of degrees of freedom 
(DOF) from 15 to 2 or 3 

77.6

87.1

87.8

89.3

80.1
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Postural Synergies – How many effective DOF are there? 

The study shows also that there were also many instances in which pairs of 
joint angles were only poorly correlated, suggesting that there are more than 
two effective degrees of freedom for the control of hand posture and that 
several higher-order PCs would also be needed to represent this rather 
limited co-variation in joint angles

There are two alternative solutions to this paradoxical result:

higher-order PCs are needed but represent noise (random variability) in the 
system

the higher-order PCs do in fact contribute to discriminating among hand shapes 
for different objects  additional DoF controlled by the CNS

Additional analysis needed! 
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Postural Synergies – Role of higher-oder PCs

Reconstruction of the hand posture using 
an increasing number of PCs (PC1, PC2, … 
PC14); PC15 was nearly zero 

Determine how much the representative 
information increased as the number of 
PCs increased 

If the higher-order PCs represent noise, 
the information about the object should 
not increase (may actually decrease) 
when higher-order PCs are used to 
define the hand posture

Conversely, if the higher-order PCs do 
contribute to discriminating among hand 
shapes, the information transmitted 
should increase as more PCs are 
included.
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Postural Synergies – Role of higher-oder PCs

The amount of information continued 
to increase monotonically up to at 
least the 5th or the 6th PC, even 
though these higher-order PCs  
contributed little to the variance

Clearly, more than two degrees of 
freedom are used to mold the hand 
into the shape appropriate to grasp a 
particular object, and the higher-
order PCs do not simply represent 
random variability (noise)
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Postural Synergies – Role of higher-oder PCs

Given that higher-order PCs do not simply represent noise, it is possible that 
the hand postures associated with a few of the objects might be best 
represented by higher PCs, i.e., that the amplitude of the higher-order PCs 
might be substantial for one or a few objects 

Thus, the overall variance attributed to one PC might be small, but its 
contribution to a few postures might be large. 

If this were the case, the distribution of the PCs for the 57 objects would be 
multimodal and/or have a broad range. But this is not the case (see Figure)  
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Postural Synergies – Role of higher-oder PCs

Distribution of normalized amplitudes of the first five principal components. 
The amplitudes of the first five PCs have been normalized to the maximum 
(or minimum) value of the first PC. The data shown are for one subject 
(U.H.). Note that the amplitudes of the 3rd through the 5th PCs are uniformly 
small, even though they contribute substantially to the information 
transmitted
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Discussion

This observation suggests the following interpretation. 

The control of hand shape is effected at two levels. One coarse control of hand 
shape with a few synergies, and a finer level that may be affecting all the joints.

Because the higher-order principal components were very small and were not 
consistent from subject to subject, the study was not able to characterize this 
“finer level of control” more precisely. 

The higher-order PCs had coefficients that were distributed among all of the joint 
angles, suggesting that this finer control is also distributed. 

This hypothesis is consistent with the observation that a disproportionate 
amount of sensorimotor cortical area is devoted to the hand. It is also consistent 
with previous demonstrations of a tendency for coordinated motion of the 
fingers. 
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Conclusions of this work

No evidence for a clustering of the static postures for the various objects was found

Not straightforward relation object shape – hand shape

Similar object shapes were often associated with grips that were quite distinct (i.e., 
precision vs power grips). 

This supports previous classifications of grasps, based on which finger(s) and which 
part(s) of the finger(s) contacts and exerts force on the object

Relationship between static hand posture (i.e., kinematics) -- control of contact force. 
They are not independent, because the hand must be shaped properly so that the correct 
set of fingers makes contact with the object. 
But there is no one-to-one relation between posture and force control
i.e., very different contact forces may be exerted with the hand in the same posture, 
depending on the object

This is consistent with observations of neural activity in the hand area of primary 
motor cortex:

Monkeys controlling the grasp force of variously shaped objects showed that
The neural correlates of force and 
The neural correlates of kinematics 

Are dissociatiated
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Antonio Bicchi, Marco Gabiccini, Marco Santello. Modelling natural and 

artificial hands with synergies, Philosophical Transactions of the Royal 

Society B, 366: 3153-3161 (2011)
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Problems with the synergistic model so far

Synergies can’t be modeled as rigid manifolds.

Example: Using the first synergy, when the hand closes around the object 
(𝜎1: 0 → 1), if touches first with index and thumb at 𝜎1 = 0.75 and after 
that fingers penetrate the object

Contact forces of the object not considered  

No compliance in the hand 

Consequently, a new model is necessary. 

𝜎1: 0 → 1
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The Soft Synergy Model (1)

Human hand (as an example): 

Compliance in the human hand is introduced by the musculotendinous system.  

Redundancy in the apparatus, together with its nonlinear elastic characteristic is 
used for changing the compliance of the agonist-antagonist pairs  

Question: How can a model of elasticity be introduced into the synergy 
model?  

Answer: Use a combination of  two force fields to control the physical hand.

One field is attracting the physical hand towards a virtual hand (which is shaped 
on the synergy manifold). The attraction forces are generated by the hand 
impedance.   

The other field is repelling the hand from penetrating the object.
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The Soft Synergy Model  (2)

The dynamical equilibrium between the two fields is found depending on the 
stiffness (more generally: mechanical impedance) of the hand actuation and 
control system.   

Reference hand moves on the synergy manifold (a-d) and represent an attractor 
for the real hand.

Real hand is repelled by contact forces with the object (e-h).

𝜎1: 0 → 1
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Synergies in Force Distribution

Questions:

Is the soft synergy model relevant to grasping?

Can the first few synergies (which where observed to generate a large part of 
pre-grasp postures) also explain the distribution patterns for grasp forces? 

Answer:

Yes. Application of the soft synergy model also allows making predictions on 
force distribution in manipulation (see experiment)
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Experiment

Associate each postural synergy through a numerical model of hand and object 
compliance to a contact force pattern.

Combine the resulting force synergies linearly with weights in order to minimize a 
grasp cost index. 

The grasp index reflects the capability of the grasp to resist external forces while 
avoiding slippage of the object in the hand (force-closure) and also weighs factors 
such as required actuator torques. 

Examples:  

Precision grasp of a cherry-like object  

Power grasp of an ashtray
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Application of the soft synergy model to grasping

In wireframe is the reference hand, moving according to the constraint 
manifold corresponding to the first three synergies.
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Results

The force-closure property of grasps 
strongly depends on which synergies 
are used to control the hand. 

Grasp cost index variations with 
increasing number of synergies 
involved, for different hand 
compliance values

No improvement is observed beyond 
the first three synergies in the 
precision grasp case (top figure), 
while continuous but small 
improvements are obtained in the 
whole-hand grasp case (bottom 
figure).
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Long-term goals of research in hand synergies

Long-term goal:
Define a set of synergies, ordered by increasing complexity 

Define a correspondence between 

A task (in terms of a number of different grasps, explorative actions and 
manipulations), 

The least number of synergies to make the task feasible.

A hand for basic grasps only could use the first two or three 
synergies in the basis. 

A manipulative hand with fine motion control of single joints 
(such as a piano player's hand) may require coordination of 
many more synergies.
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Eigengrasps: 
Grasp planning based on postural hand synergies
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Eigengrasps – Introduction

The grasp planning problem in robotics:
Find a hand pose and configuration (joint angle vector) relative to a known 
object such that the contact locations between hand and object prevent object 
motion relative to the hand, i.e. a stable grasp is achieved.

This can be treated as an optimization problem:
Vary hand pose and configuration until distances between desired hand contact 
points and object surface are zero and a mechanical stability criterion is satisfied.

However, the hand has:
6 DoF pose

21 DoF configuration/posture (in case of the human hand)

Solving a non-linear optimization problem in 27-dimensional space may take 
very long.
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Eigengrasps – Idea

Idea:

Do not use the complete 21 DoF hand configuration for the optimization process.

Instead, use only the first two hand synergies obtained from human grasping 
observations.

Thus, the 27-dimensional optimization problem is reduced to a 8-dimensional
optimization problem.

Theoretical justification: Most of the possible useful grasps should be found in 
the vicinity of a small set of points in configuration space.

In 2007, Ciocarlie presented a grasp planning algorithm based on this idea 
and coined the term "eigengrasps“ for the principal components of the 
human grasp configuration data.

Matei Ciocarlie, Corey Goldfeder, Peter Allen. Dimensionality reduction for hand-independent dexterous 
robotic grasping, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2007)
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Eigengrasps – Formalism

Let 𝑑 be the total number of DoF of the hand and 𝜃𝑖 the 𝑖-th DoF, then a 
hand configuration 𝒑 can be defined as

𝒑 = [𝜃1, 𝜃2, … , 𝜃𝑑] ∈ ℝ𝑑.

Each eigengrasp 𝑒𝑖 is a 𝑑-dimensional vector and can also be thought of as 
direction of motion in joint space:

𝒆𝒊 = [𝑒𝑖,1, 𝑒𝑖,2, … , 𝑒𝑖,𝑑] ∈ ℝ𝑑

The idea is now that the eigengrasps 𝒆𝒊 form a low-dimensional basis for 
grasp configurations, and can be linearly combined to closely approximate 
most common grasping configurations.
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Eigengrasps – Formalism (cont‘d)

By choosing a basis comprising 𝑏 eigengrasps, a hand configuration placed in 
the subspace defined by this basis can be expressed as a function of the 
amplitudes 𝑎𝑖 along each eigengrasp direction

𝒑 =෍

𝑖=1

𝑏

𝑎𝑖𝒆𝒊

A hand configuration is therefore completely defined by the amplitudes vector

𝒂 = [𝑎1, … , 𝑎𝑏] ∈ ℝ𝑏.



Chapter 3 | 102

Eigengrasps

Similar to the human hand, eigengrasps for robotic hands can be defined by 
combining several DoF of the respective hand:
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Eigengrasps – optimization problem

In order to find stable grasps, one minimizes the energy function

𝐸 = 𝑓 𝒂,𝒘

Equation symbols:

𝒂 ∈ ℝ2 is the vector of eigengrasp amplitudes 

𝒘 ∈ ℝ6 is the vector describing the wrist pose

𝑓(. , . ) is a function consisting of several components:

The sum of distances between the desired contact points on the hand and the object 
surface

The sum of angular differences between the orientation of the surface normals at the 
contact locations and the closest point on the object

A modified grasp quality measure based on the grasp wrench space

See (publicly available) source code of the GraspIt! simulator for further details: 
http://www.cs.columbia.edu/~cmatei/graspit/

http://www.cs.columbia.edu/~cmatei/graspit/
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Optimization process

Use simulated annealing as an optimization algorithm

Example: Best state found after k iterations 
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Eigengrasps

Hand poses and 
configurations found by 
the optimization process 
for several hands and test 
objects
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Eigengrasp planning – some further thoughts

Optimization in the eigengrasp space with only two principal components does 
not necessarily lead to hand configurations where all (most) finger segments 
are in contact with the object‘s surface.

This is in line with the finding that the higher synergies are not simply noise but do 
in fact represent details of the object‘s shape.

Solution: After a fixed amount of iterations (or a certain period of time), stop the 
optimization process and close the finger joints until contact to the object 
prevents further motion.

The algorithm does not work well with non-convex objects.

The algorithm can be modified towards finding precision grasps by considering 
only desired contact points at the fingertips (see picture).
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Implementation of synergies in robotics
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Literature

Christopher Y. Brown and Harry Asada. Inter-Finger Coordination and 
Postural Synergies in Robot Hands via Mechanical Implementation of 
Principal Components Analysis, IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS), (2007)

Red: relevant for the exam
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Building robot hands based on postural synergies

Do we really need (want) to independently control more than 20 DoF in a 
robotic hand? 

Example: Shadow hand, ARMAR hands, … 

Engineer's perspective: 

The more motors in the hand...  

... the more expensive the hand  

... the heavier the hand (load on the robot arm!)  

... the harder to control 

A different approach:  

Use only as many motors as necessary.

Use a mechanical implementation of postural synergies.

This is part of a whole area of research: underactuated hands
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Mechanical implementation of hand synergies

Each desired posture (configuration) of the robot hand is represented by a 
posture vector: 

𝑷𝒊 = 𝑧1… 𝑧𝑗 … 𝑧𝑛
𝑇

The elements 𝑧𝑗 of the posture vector are the linear tendon displacements

required to create the posture.

Given 𝑁 posture vectors, we define the posture matrix:

𝑷 =

𝑷𝟏
𝑻

⋮
𝑷𝒊
𝑻

⋮
𝑷𝑵
𝑻
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Mechanical implementation of hand synergies

Principal Components Analysis (PCA) lets us rewrite the posture matrix as the 
product of two smaller matrices: 

one matrix consisting of the principal component vectors and 

one matrix consisting of the weights for those vectors.

Similar to singular value decomposition (see Brown and Asada 2007)

First, calculate the covariance matrix of 𝑷. 

Next, find the eigenvectors of the covariance matrix. 

These are the principal components of 𝑷. Their associated eigenvalues, ranked 
from largest to smallest, represent the relative importance of each component 
(i.e. the variance in the data explained by the respective component).  

Since these principal components can be used to reconstruct the entire posture 
matrix, we call them eigenpostures.
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Mechanical implementation of hand synergies

If we choose to use only a few of the eigenpostures, then we can still 
approximate the posture matrix with reasonable accuracy.

Here, we use only two principal components, so:

𝑷 ≈ ෡𝑷 =

𝑞1,1 𝑞1,2
⋮

𝑞𝑖,1 𝑞𝑖,2
⋮

𝑞𝑁,1 𝑞𝑁,2

𝒆𝟏
𝑻

𝒆𝟐
𝑻 +

ҧ𝑧1 ⋯ ҧ𝑧𝑛
ҧ𝑧1 ⋯ ҧ𝑧𝑛

⋮
⋮

ҧ𝑧1 ⋯ ҧ𝑧𝑛

The values 𝑞𝑖,𝑘 are scalar weights.

The vectors 𝒆𝒌 are the eigenpostures.

The additional term on the right is a zero-offset common to all postures (the 
average posture in the set)
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Mechanical implementation of hand synergies

Now we can rewrite each posture vector as:

𝑷𝒊 ≈ 𝑞𝑖,1𝒆𝟏 + 𝑞𝑖,2𝒆𝟐 + ത𝒛, where ത𝒛 = [ ҧ𝑧1… ҧ𝑧𝑗 … ҧ𝑧𝑛]

Goal: Find a way to realize this equation through mechanical means! 

Problems to be solved in this context:

How to actuate a vector multiple 𝑞𝑖,𝑘𝑒𝑘?

How to mechanically add two vector quantities?

How to account for the zero offset ҧ𝑧?
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How to actuate a vector multiple?

We can use the individual elements of 

𝒆𝒌 = 𝑑𝑘,1… 𝑑𝑘,𝑗 … 𝑑𝑘,𝑛 as the 

diameters of pulleys fixed on a shaft 
(see figure) 

𝑞𝑖,𝑘 is represented in the angle of 
rotation of the shaft, Φ𝑖,𝑘 = 2𝑞𝑖,𝑘. 

The tendon displacements 𝑦𝑖,𝑘,𝑗 equal 

the elements of 𝑞𝑖,𝑘𝒆𝒌.

If any of the values 𝑑𝑘,𝑗 are negative, we 

can account for this by wrapping 
tendons in opposite directions.
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How to mechanically add two vector quantities?

Add two scalar values by the mechanism in the 
figure.

The pulley in the figure is free to translate in the 
vertical direction. 

This configuration also winds up scaling the 

output, so that: 𝑧𝑖,𝑗 =
1

2
(yi,1,j + yi,2,j)

Attach one of these mechanisms to each of the 
outputs yi,k,j from the mechanism on the 

previous slide. 

Then the  vector output becomes:

[𝑧𝑖,1…𝑧𝑖,𝑛] =
1

2
( yi,1,1…yi,1,n + yi,2,1…yi,2,𝑛 )

[𝑧𝑖,1…𝑧𝑖,𝑛] =
1

2
(𝑞𝑖,1𝒆𝟏 + 𝑞𝑖,2𝒆𝟐)
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Putting everything together

How to account for the zero offset value ҧ𝑧?  

Simply adjust the tendon lengths so that [𝑧𝑖,1…𝑧𝑖,𝑛] = ҧ𝑧 when the shafts are 
in their zero position (Φ1 = Φ2 = 0)

The complete mechanism:
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The resulting 17 DoF 5-fingered robot hand

The eigenposture mechanism Sliding pulley details and tendon routing
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The TUAT/Karlsruhe Humanoid Underactuated Hand
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Underactuation 

Underactuation expresses the property of a system to have an input vector of 
smaller dimension than the output vector 

In robotics, it means having fewer actuators than degrees of freedom (DoF)

Simple control 

Adapt to the shape of the object 

Mechanical intelligence 
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The TUAT/Karlsruhe Humanoid Underactuated Hand

It works with one actuator

Humanoid Robot  ARMAR
Univ. of Karlsruhe, Germany 

Joint work: Naoki Fukaya and Tamim Asfour

Artificial arm by using spherical ultrasonic motor

Tokyo Univ. of Agriculture  and Technology 
(東京農工大学／TUAT)
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The TUAT/Karlsruhe Humanoid Hand

1. Light weight, similar size, similar motion
2. Only one actuator
3. No need for sensors, simple operation
4. Self-make a best gripping shape
5. Self adjustment of fingertip force
6. No need for feedback control

The core idea is the 
”Mechanism”
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The TUAT/Karlsruhe Humanoid Hand

Motivation: Typical grasp motion of daily life

A. D. Keller, C. L. Taylor and V. Zahm: Studies to determine the functional requirements
for hand & arm prostheses, Dept. of Engr., UCLA., CA, 1947
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The TUAT/Karlsruhe Humanoid Hand

Finger link mechanism for finger Self moving link mechanism for finger

Palm moving 
mechanism
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Latest version (2013)

• This hand realizes Cutkosky’s
taxonomy and 14 kinds of 
operations of daily life 

• It operates by one large servo 
motor and 6 small auxiliary servo 
motors. 

• Needs no feedback control, 
touch sensor and complex 
control system

• Easy operation (only push 
buttons of controller)

Naoki Fukaya, Tamim Asfour, Rüdiger Dillmann and Shigeki Toyama, Development of a Five-Finger 
Dexterous Hand without Feedback control: the TUAT/Karlsruhe Humanoid Hand, IROS 2013

Red: relevant for the exam
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The TUAT/Karlsruhe Humanoid Hand

Further development by Naoki Fukaya
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The TUAT/Karlsruhe Humanoid Hand

Further development by Tamim Asfour for 3D printing
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The TUAT/Karlsruhe Humanoid Hand

Further development by Tamim Asfour for 3D printing
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The TUAT/Karlsruhe Humanoid Hand

Further development by Tamim Asfour for 3D printing
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The TUAT/Karlsruhe Humanoid Hand

Further development by Tamim Asfour for 3D printing
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The TUAT/Karlsruhe Humanoid Hand

Further development by Tamim Asfour for 3D printing
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The TUAT/Karlsruhe Humanoid Hand

Publications

Naoki Fukaya, Tamim Asfour, Rüdiger Dillmann and Shigeki Toyama, 
Development of a Five-Finger Dexterous Hand without Feedback control: the 
TUAT/Karlsruhe Humanoid Hand, IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS 2013)

Naoki Fukaya, Tamim Asfour, Rüdiger Dillmann and Shigeki Toyama, Design of a 
Humanoid Hand for Human Friendly Robotics Applications. International 
Conference on Machine Automation (ICMA2000).  

Naoki Fukaya, Tamim Asfour, Rüdiger Dillmann and Shigeki Toyama, Design of 
the TUAT/Karlsruhe Humanoid Hand. IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS 2000) 

Red: relevant for the exam
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Grasping known, familiar and unknown objects
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Grasping Objects: Outline

Grasping known objects: Recap

Grasping familiar objects
Concepts

Different approaches

Part-based grasp planning for familiar objects

Grasping unknown objects
Concepts

Approximating unknown object shape

From low-level features to grasp hypotheses
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Grasping Known Objects: Typical Flow-Chart

Grasp 
generation

Grasp 
simulation

Grasp 
ranking

Object models 
database

Object-grasp 
database

Object 
recognition

Pose 
estimation

Grasp selection and 
reachability filtering

Scene 
estimation

Scene

Execution

Offline

Online

Grasp 

candidates

Ranked grasp 

hypotheses

Object ID 

Object 

models

Object 

hypothesis

Object 

model
Object pose 

and scene 

context Grasp

Contact 

points

Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica 
Kragic, Data-Driven Grasp Synthesis - A Survey. IEEE Tran. 
on Robotics, pp. 289-309, vol. 30, no. 2, 2014 



Chapter 3 | 135

Known: Grasp Synthesis on Object Parts

Question: How to generate good grasp candidates?

Approaches for different segmentation methods
Shape primitives
Manual segmentation into primitives
(e.g. boxes, cylinders, spheres, cones)

Box decomposition
Automatic segmentation into boxes

Superquadrics
Automatic segmentation into superquadrics

Medial axis transformation
Use only spheres

Surface normals Part of Robotics-1
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A Box-Based Approach: Concept

Approximate the object’s geometry with boxes (box decomposition)

Generate grasp hypotheses for boxes

Evaluate the grasp hypotheses

approximation of object geometry

heuristic grasp selection

final grasp
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A Box-Based Approach: Evaluation

Huebner, K., Welke, K., Przybylski, M., Vahrenkamp, N., Asfour, T., Kragic, D., and Dillmann, R. Grasping Known Objects 
with Humanoid Robots: A Box-Based Approach. In 14th International Conference on Advanced Robotics, 2009

Sample of spherical grasp

Sample of box grasp

“Best” spherical grasp

“Best” box grasp(s)

Box decomposition 

generates few but 

high-quality grasp 

hypotheses
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Grasp Planning using Medial Axis: Concept

Medial axis

Approximate object form using contained 
spheres with maximal diameter

Contained spheres must touch the object 
surface at two or more points

The medial axis

is the union of the centers of all 
contained spheres

Describes the topological skeleton of the 
object

Advantages

Good approximation of object geometry

Details are retained

Good description of symmetries
H. Blum, Models for the Perception of Speech and Visual Form. 
Cambridge, Massachusetts: MIT Press, 1967, A transformation 
for extracting new descriptors of shape, pp. 362–380.
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Grasp Planning using Medial Axis: Algorithm

Sample object surface

Calculate medial axis

Analyze the cross-section of the medial axis

Minimum Spanning Tree

Clustering

Convex hull

Generate grasp hypotheses

Evaluate grasp stability

Przybylski, Markus, Tamim Asfour, and Rüdiger Dillmann. Planning 
grasps for robotic hands using a novel object representation 
based on the medial axis transform. IROS, 2011.
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Grasping Familiar Objects: Concept

Identify categories of objects with common characteristics/features

Visual: texture, shape, spatial constellation

Semantic: Functionality, task

Train grasps on a set of known objects

Store features and generated grasps

Use learning mechanisms for generalization

Grasp new but familiar objects

Categorize the new object

Recall grasp hypothesis of objects in the same category

Adapt grasp hypothesis to new object

Optional: Update database with new data
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Grasping Familiar Objects: Approaches

Discriminative approaches

Learn a discriminative function to distinguish bad and good grasps

Use low-level 2D and/or 3D features

Grasp synthesis by comparison

Find the most similar object in the database

Adapt good grasps from that object

Generative models for grasp synthesis

Abstract over all examples in the database

Category-based grasp synthesis

Use object categories and semantic to determine similarity

Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica Kragic, Data-Driven Grasp 
Synthesis - A Survey. IEEE Tran. on Robotics, pp. 289-309, vol. 30, no. 2, 2014 
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Discriminative Approaches: Flow-Chart
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Discriminative Approaches: Rao et al.

Goal: Learn which parts of the scene are graspable or not

Preprocessing: 

Segment based on depth information

Feature vector

Color information (LAB color space)

Variance in depth and height of segments (3D)

Width and height of segments (2D)

Learning mechanism

Support Vector Machine (SVM) with Gaussian Radial Basis Function (RBF) kernel

D. Rao, Q. V. Le, T. Phoka, M. Quigley, A. Sudsang, and A. Y. Ng, Grasping novel objects with 
depth segmentation, in Proc. IEEE/RSJ, Int. Conf. Intell. Robots Syst., 2010

Offline Learning

Online
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Grasp Synthesis by Comparison

General:

Find the most similar object (part) in the database

Use the associated grasps to generate good grasp hypotheses

Synthetic exemplars:

Requirement: 3D object models (for exemplary and familiar objects)

Use 3D models to calculate similarity

Transfer grasp to familiar object

Sensor-based exemplars:

Use object representation from sensor data

Execute on real robot

Learn from past and new grasp experiences
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Synthetic Exemplars: Li and Pollard

Grasp synthesis as a shape matching 
problem

Offline: Fill hand pose database

Online: query matching hand pose

Hand pose database

Contact points and normals

On hand and known object

Shape matching process

Query: new object model

Find: Hand pose with matching/similar 
contact points and normals

Y. Li and N. Pollard, A Shape Matching Algorithm for synthesizing humanlike enveloping 
grasps, in Proc. IEEE/RAS Int. Conf. Human. Robots (Humanoids), Dec. 2005, pp. 442–449.
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Sensor-Based Exemplars: Flow-Chart
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Sensor-Based Exemplars: Herzog et al.

Training data

Programming by demonstration

Generate templates from 
demonstrated grasps

Template

Local shape descriptor for a possible 
grasp pose

Generated from 3D depth data

Matching

Find best matching template 
according to the local shape

A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, T. Asfour, and S. Schaal, 
Template-based learning of grasp selection, in Proc. IEEE Int. Conf. Robot. 
Autom., 2012, pp. 2379–2384.
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Generative Models for Grasp Synthesis: Song et al.

Infer grasp configuration for an object 
given a specific task

Joint distribution of variables is modelled 
as Bayesian network

Training data:

Grasp examples generated in GraspIt!

Annotated with task-specific quality 
metrics

Improved structure learning

Nonlinear dimensionality reduction

D. Song, C. H. Ek, K. H ̈ ubner, and D. Kragic, Multivariate discretization for bayesian network structure learning 
in robot grasping, in Proc. IEEE Int. Conf. Robot. Autom., Shanghai, China, May 2011, pp. 1944–1950.

Ranking of approach vectors

Brighter: Higher rank
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Category-Based Grasp Synthesis

Previous approaches: 

Similar low-level features  Similar grasp

Idea: Similarity on semantic level

Different shape or appearance

Same functional category

But can be grasped in a similar way

Category is not known

Category needs to be determined

Classification of objects based on features
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Category-Based Grasp Synthesis: Marton et al.

Features based on

Segmented point cloud

Segmented image region

Object classification

Bayesian network

Fixed set of categories

Only detection of categories

No grasp synthesis

Z. C. Marton, D. Pangercic, N. Blodow, and M. Beetz, Combined2-D–3-D categorization and classification 
for multimodal perception systems, Int. J. Robot. Res., vol. 30, no. 11, pp. 1378–1402, 2011.
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Category-Based Grasping: Madry et al.

Classification based on multi-model visual descriptors

Also uses task information

Bayesian network generates hand configuration

M. Madry, D. Song, and D. Kragic, From object categories to grasp transfer using probabilistic reasoning, 
in Proc. IEEE Int. Conf. Robot. Autom., 2012, pp. 1716–1723.
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Part-Based Grasp Planning for Familiar Objects

Goal

Generalized grasping information for familiar objects

Grasps can be used for familiar objects and partly known objects

Offline learning

Train grasps on multiple familiar object models

Identify promising grasps with transferability success measure

Online

Transfer grasps to similar novel objects

Vahrenkamp, Nikolaus, et al., Part-based grasp planning for familiar objects, Humanoid Robots 
(Humanoids), 2016 IEEE-RAS 16th International Conference on. IEEE, 2016.
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Part-Based Grasp Planning for Familiar Objects

Offline learning

Step 1: Object Shape Segmentation

Step 2: Labeling with task-based information

Step 3: Part-based grasp planning

Online execution

Localization and approximation of object parts

Grasp transfer to novel object
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Offline Step 1: Object Shape Segmentation

Head

Handle

Training Set
Segmented Parts
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Offline Step 2: Labeling with Task-Based Information

Segmented Parts

Head

Handle

Task: hand over

Task: tool use
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Offline Step 3: Part-Based Grasp Planning

Head

Handle

Head

Handle

Training Set Template Grasps
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Online: Localization and Approximation of Object Parts

Input: RGBD data (point cloud)

Segmentation

Identify the object

Segment object parts

Classification

Classify each object part

Label the parts

Handle Head
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Online: Grasp Transfer to Novel Object

Task 
Constraints

Object Part 
Selection

Template Grasps

Grasp Transfer
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Part-Based Grasp Planning: Architecture

Online Grasp Transfer

Grasp 
Transfer

Solution

IK

Grasp Planning

Object Set Segments

Mesh 
Segmentation

Template Grasps

Grasp 
Planning

Task LabelingObject 
Category

Robot Memory

Task 
ConstraintsPerception 

Primitive Extraction
Object 

Segments

Object 
Category
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Part-based Grasp Planning: Video
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Grasping Unknown Objects: Concept

How to grasp unknown objects?

Object model is not available

No access to similar objects or grasp experiences

Mapping: Noisy sensor data  Candidate grasps

Approaches can be divided into two methods

Approximating unknown object shape

From low-level features to grasp hypotheses

Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica Kragic, Data-Driven Grasp 
Synthesis - A Survey. IEEE Tran. on Robotics, pp. 289-309, vol. 30, no. 2, 2014 
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Grasping Unknown Objects: Flow-Chart

Scene

Scene
segmentation

Segmented 

cloud

Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica 
Kragic, Data-Driven Grasp Synthesis - A Survey. IEEE 
Tran. on Robotics, pp. 289-309, vol. 30, no. 2, 2014 
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Approximating Unknown Object Shape

Idea

Approximate object shape using shape primitives

Plan grasp on approximated shape

Input options

Monocular images

Stereo images

RGBD data (point cloud)

Shape approximation methods

Quadrics

Local normal estimation

Mesh construction (using symmetry)
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Approximation using Quadrics: Dunes et al.

Find a quadric that approximates the shape 
of the object

Use of active vision (next chapter):

Gather multiple views of the object

Minimize uncertainty of parameters

Determine the next best view

C. Dunes, E. Marchand, C. Collowet, and C. Leroux, Active Rough Shape Estimation of Unknown Objects, 
in IEEE Int. Conf. on Intelligent Robots and Systems (IROS), 2008, pp. 3622–3627.
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Approximation on point clouds: Marton et al.

Input: Point cloud

Initial step:

Estimation of surface normal and 
minimal curve radius for each point

Different Surface estimation 
methods are tested:

1. Fit boxes and cylinders

2. Detect revolution surfaces

3. Triangulate free form surfaces

Grasp planning on estimated object 
surface Z. C. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, and M. Beetz, 

General 3D Modelling of Novel Objects from a Single View, in IEEE/RSJ 
Int. Conf. on Intelligent Robots and Systems (IROS), 2010, pp. 3700 – 3705.
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Detecting and Using Symmetry: Bohg et al.

Detect planar reflection symmetry in point cloud

Each point P can be uniquely associated with a second point Q by  reflection on 
the opposite  side of a symmetry plane

Iteratively improve and test hypothesis for symmetry plane

Object shape completion

Create a mesh based on original and mirrored points

Use Poisson reconstruction to create a mesh

Plan grasps on the completed object shape

J. Bohg, M. Johnson-Roberson, B. León, 
J. Felip, X. Gratal, N. Bergström, D. 
Kragic, and A. Morales, Mind the Gap –
Robotic Grasping under Incomplete 
Observation, in IEEE Int. Conf. on 
Robotics and Automation (ICRA), 2011.
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Shape completion: Schiebener et al.

Use planar reflection symmetry

Still holes in the point cloud

Additional completion steps

Sides of the object

Projection into the camera plane

Subdivide image into horizontal segments

Find minimal and maximal point in horizontal 
direction

Connect with mirrored points

Bottom of the object

Use supporting plane

Schiebener, David, et al. Heuristic 3D object shape completion based on symmetry and scene context. 
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016.
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From Low-Level Features to Grasp Hypotheses

Step1: Vision/Image Processing

Edge detection

Surface detection

Step 2: Abstract elements extraction

Edge based

Surface based

Step 3: Geometry analysis for grasping

Edge based

Surface based
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From Low-Level Features to Grasp Hypotheses

Early Cognitive Vision (ECV) based Elementary Grasping Action (EGA) (Kraft et al 

2009, Popovic et al. 2011)

Graspable Boundary and Convex Segments (RajeshKanna et al 2015)
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ECV based EGA (Kraft et al 2009, Popovic et al. 2011)

Hierarchical ECV system (Step1: Vision/Image Processing)

2D line segments

3D line segments

3D contours

2D texlets

3D texlets

3D surflings

• Proximity

• Collinearity

• Co-circularity

• Similar appearance

• Color

• Position

• Orientation
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Edge Elementary Grasping Action 

Extract abstract contours (Step 2: Abtract elements extraction)

Generate edge based grasping actions (Step 3: Geometry analysis for grasping)

ECV based EGA (Kraft et al 2009, Popovic et al. 2011)

Find a pair of contours with similar properties 

(co-planarity and co-colority)

Geometry 

Analysis
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Surface Elementary Grasping Actions 

Contact points extraction (Step 2: Abtract elements extraction)

boundary 

surfling

contact point

ECV based EGA (Kraft et al 2009, Popovic et al. 2011)
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Surface Elementary Grasping Actions

Contact points extraction (Step 2: Abtract elements extraction)

Contact points selection (Step 3: Geometry analysis for grasping)

Pinch grasps: any contact 

points generate a valid 

grasping attempt

Constraints (in the order):

1. Contact combinations are too far apart;

2. The angle between contact normal and 

direction of the force (stable grasping);

ECV based EGA (Kraft et al 2009, Popovic et al. 2011)

Geometry 

Analysis
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Graspable boundary and convex segments (RajeshKanna et al 2015) 

Grasplet

Graspable boundary segment: A segment that corresponds to a 3D spatial 
discontinuity.

Graspable convex segment: A segment along which the angle between the two 
faces forming the segment is greater than 180 deg.
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Graspable boundary and convex segments (RajeshKanna et al 2015) 

Contour segments (Step1: Vision/Image Processing)
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Graspable boundary and convex segments (RajeshKanna et al 2015) 

Grasplets extraction (Step2: Abtract elements extraction)

graspable 

boundary 

segment

graspable 

convex 

segment
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Graspable boundary and convex segments (RajeshKanna et al 2015) 

Grasping generation (Step 3: Geometry analysis for grasping)

Steps:

1. Draw line

• 𝐺𝐿 𝑠. 𝑡. 𝐺𝐿 ⊥ 𝐺𝑛𝑖 , 𝐺𝐿 ⊥ 𝐺𝑛𝑗
• 𝐺𝑛𝑖

′ 𝑠. 𝑡. 𝐺𝑛𝑖
′ ⊥ 𝐺𝐿, 𝐺𝑛𝑖

′ ⊥ 𝐺𝑛𝑖
• 𝐺𝑛𝑗

′ 𝑠. 𝑡. 𝐺𝑛𝑗
′ ⊥ 𝐺𝐿, 𝐺𝑛𝑗

′ ⊥ 𝐺𝑛𝑗
2. Calculate angles

• 𝜃′ ≔ ∠𝐺𝑛𝑗 , 𝐺𝐿

• Θ′ ≔ ∠𝐺𝑛𝑖
′ , 𝐺𝑛𝑗

′

• 𝜙′ ≔ ∠Π𝑖𝑚 , Π𝑗𝑚
3. Grasping decision

𝜃′ ≈ 90𝑜, Θ′ ≈ 0𝑜, 𝜙′ ≈ 180𝑜

• 𝑉𝑖𝑚 and 𝑉𝑗𝑚 are inward and in 

opposite direction => PLANAR 

grasp

• 𝑉𝑖𝑚 and 𝑉𝑗𝑚 are parallel and in 

same direction => PARALLEL 

grasp

Θ′
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Graspable boundary and convex segments (RajeshKanna et al 2015) 


